DOCKETED			
Docket Number:	17-BSTD-01		
Project Title:	2019 Building Energy Efficiency Standards PreRulemaking		
TN #:	219857		
Document Title:	Presentation - Exhaust Air Heat Recovery		
Description:	By: Mark Alatorre, PE		
Filer:	Hilary Fiese		
Organization:	California Energy Commission		
Submitter Role:	Commission Staff		
Submission Date:	6/23/2017 10:31:54 AM		
Docketed Date:	6/23/2017		

Exhaust Air Heat Recovery

Mark Alatorre, PE Building Standards Office Efficiency Division

> Pre-Rulemaking Workshop Imbrecht Hearing Room June 20, 2017

Acknowledgements

California Statewide Codes and Standards Team

CASE Authors: Ken Takahashi (Integral Group)

Background

- Not Currently required under the Building Energy Efficiency Standards
- Compliance Option for Dedicated
 Outside Air Systems
- Under certain conditions it could yield energy savings

Background

- Currently required by ASHRAE 90.1-2016
- AHRI Standard 1060/1061
- Listed in the AHRI Directory
- Many Different Manufacturers
- Stand Alone or Packaged

Product Availability

- Current AHRI Listings
- 1,254 plate type
- 2,894 wheel type

Minimum Requirement (Prescriptive)	Plate Type	Wheel Type
50% recovery	86%	95%
60% recovery	48%	93%
70% recovery	9%	24%

Jertinoute					
AHRI Certified Reference N	lumber: 10272424	Date: 6/16	/2017 †St	atus: Active	
Product: Component Air-to-A	ir Energy Recovery	Ventilator			
Model Number: XLT-H 100(47 Manufacturer: AIROTOR, LLC)-42				
Trade/Prand name: AIPOTOR					
Independent, third party testi	ng: Plate	ernication of rating	accuracy by Ann	w (SCEM): 12900	
Pressure Drop (inches):	0.75	Ac	dditional Notes:	w (301 m). 12800	
Leakage Ratings Pressu Test 1: -5	ure Differential	EATR(%)	0ACF	Purge Angle/Setting	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5.	ure Differential .00 00 00	EATR(%) 0.00 0.00 0.00	OACF 1.00 1.00 1.00	Purge Angle/Setting 0 0 0	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5. Thermal Effectiveness Ratings	ure Differential 00 00 00 at 0" Pressure Differe Sensible(%)	EATR(%) 0.00 0.00 0.00 ential	OACF 1.00 1.00 1.00	Purge Angle/Setting	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5. Thermal Effectiveness Ratings 100% Air Flow Heating	ure Differential .00 00 at 0" Pressure Differe <i>Sensible(%)</i> 65	EATR(%) 0.00 0.00 0.00 ential	OACF 1.00 1.00 1.00 1.00	Purge Angle/Setting	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5. Thermal Effectiveness Ratings 100% Air Flow Heating 75% Air Flow Heating 100% Air Flow Heating	ure Differential .00 00 00 at 0" Pressure Differe <i>Sensible(%)</i> 65 68 82	EATR(%) 0.00 0.00 ential www.ahr	OACF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00	Purge Angle/Setting 0 0 0 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5. Thermal Effectiveness Ratings 100% Air Flow Heating 100% Air Flow Heating 100% Air Flow Cooling 75% Air Flow Cooling	ure Differential 00 00 at 0" Pressure Differe Sensible(%) 65 66 63 63 64	EATR(%) 0.00 0.00 ential ERLa w w w . a h r	OACF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Purge Angle/Setting 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5. Thermal Effectiveness Ratings 100% Air Flow Heating 75% Air Flow Heating 100% Air Flow Cooling 75% Air Flow Cooling	ure Differential .00 00 at 0" Pressure Differe <i>Sensible(%)</i> 65 66 63 64 <i>Net Sensible(</i>	EATR(%) 0.00 0.00 ential ential www.ahri %) Ne	OACF 1.00 1.00 1.00 1.00 1.00 0 1.00 0 1.00	Purge Angle/Setting 0 0 Total(%) 0 0 43 43 24 24 24 Net Total(%)	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5. Thermal Effectiveness Ratings 100% Air Flow Heating 75% Air Flow Heating 100% Air Flow Cooling 75% Air Flow Cooling 100% Air Flow Heating	ure Differential .00 00 at 0" Pressure Differe <i>Sensible(%)</i> 85 86 83 84 <i>Net Sensible(</i> *	EATR(%) 0.00 0.00 ential www.ahr %) Na	OACF 1.00	Purge Angle/Setting 0 0 0 0 0 7 0 7 0 0 7 0 0 0 0 0 0 0 0	
Leakage Ratings Pressu Test 1: -5 Test 2: 0. Test 3: 5. Thermal Effectiveness Ratings 100% Air Flow Heating 100% Air Flow Cooling 75% Air Flow Cooling 100% Air Flow Heating 100% Air Flow Cooling	ure Differential 00 00 at 0" Pressure Differe Sensible(%) 65 68 63 64 Net Sensible(* 65 66 63 64	EATR(%) 0.00 0.00 ential ERLa www.ahri %) Ne	OACF 1.00 1.00 1.00 1.00 0 1.0	Purge Angle/Setting 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	

Product Type: Pressure Drop (inche	Plate s): 0.75	Le	eaving Supply Air Flo dditional Notes:	w (SCFM): 12900
Leakage Ratings	Pressure Differential	EATR(%)	OACF	Purge Angle/Setting
Test 1: Test 2: Test 3: Thermal Effectivenes 100% Air Flow Hea	-5.00 0.00 5.00 s Ratings at 0" Pressure Diffe Sensible(% ting 65	erential ER www.ahr	1.00 1.00 1.00 atent(%)	D Total(%)
100% Air Flow Coo 75% Air Flow Cool	iling 63 ng 64 Net Sensibl	le(%) N	o 0 et Latent(%)	4-3 24 24 Net Total(%)
100% Air Flow Hea 75% Air Flow Heat 100% Air Flow Coo 75% Air Flow Cool	iting 65 ng 86 iling 63 ng 64		0 0 0 0	43 43 24 24

Energy Analysis

- Prototypes Used
 - Small office packaged single zone
 - Medium office variable air volume
 - Medium office/lab high ventilation fraction

Prototype ID	Occupancy Type (Residential, Retail, Office, etc.)	Area (ft2)	Number of Stories	Statewide Area (million ft2)
Prototype 2	Small Office	24,413	1	15.288
Prototype 3	Medium Office	53,628	3	42.358
Prototype 15	Medium Office-Lab	53,628	3	1.742

Key Assumptions

- Added static pressure to air stream will be based on ASHRAE 90.1 Section 6.5.3.1 under the fan pressure drop adjustment table for energy recovery device.
- Outdoor air intake will bypass the heat recovery ventilator when the outdoor conditions are more suitable for economizer operation.
- No fan energy savings during bypass mode
- Analysis will maintain the same fan total static pressure for all operating hours.
- Result in increased fan power, even during economizer bypass

Energy Analysis – First Year Impact

Small Office First Year Impacts per Square Foot

Climate Zone	Electricity Savings (kWh/ft2- yr)	Peak Electricity Demand Reductions (kW/ft2)	Natural Gas Savings (therms/ft2-yr)	TDV Energy Savings (TDV kBtu/ft2-yr)
1	-1.25	-1.49 x 10-4	0.07	-22.20
2	-1.27	-8.05 x 10-7	0.04	-25.08
3	-1.30	-7.69 x 10-5	0.03	-30.31
4	-1.27	-4.22 x 10-5	0.02	-28.19
5	-1.30	-1.18 x 10-4	0.03	-31.22
6	-1.28	2.10 x 10-5	0.01	-32.44
7	-1.30	-1.01 x 10-4	0.00	-35.21
8	-1.27	6.00 x 10-6	0.01	-31.64
9	-1.26	1.24 x 10-5	0.01	-29.86
10	-1.29	3.57 x 10-5	0.01	-29.78
11	-1.18	1.34 x 10-4	0.04	-19.39
12	-1.21	4.86 x 10-5	0.04	-21.42
13	-1.16	-2.60 x 10-5	0.04	-21.06
14	-1.22	-5.46 x 10-6	0.04	-23.31
15	-0.99	-1.08 x 10-5	0.00	-21.97
16	-1.37	-1.31 x 10-4	0.09	-17.79

Energy Analysis – 15 Year Impact

Small Office 15 Year Impacts per Square Foot

Climate Zone	15-Year TDV Electricity Cost Savings (2020 PV\$)	15-Year TDV Natural Gas Cost Savings (2020 PV\$)	Total 15-Year TDV Energy Cost Savings (2020 PV\$)
1	-\$3.16	\$1.18	-\$1.98
2	-\$2.90	\$0.67	-\$2.23
3	-\$3.20	\$0.50	-\$2.70
4	-\$2.91	\$0.41	-\$2.51
5	-\$3.30	\$0.52	-\$2.78
6	-\$3.08	\$0.19	-\$2.89
7	-\$3.21	\$0.08	-\$3.13
8	-\$2.97	\$0.15	-\$2.82
9	-\$2.83	\$0.17	-\$2.66
10	-\$2.85	\$0.20	-\$2.65
11	-\$2.41	\$0.69	-\$1.73
12	-\$2.59	\$0.69	-\$1.91
13	-\$2.53	\$0.65	-\$1.87
14	-\$2.73	\$0.66	-\$2.07
15	-\$2.02	\$0.07	-\$1.96
16	-\$3.20	\$1.62	-\$1.58

Energy Analysis – First Year Impact

Medium Office First Year Impacts per Square Foot

Climate Zone	Electricity Savings (kWh/ft2- yr)	Peak Electricity Demand Reductions (kW/ft2)	Natural Gas Savings (therms/ft2-yr)	TDV Energy Savings (TDV kBtu/ft2-yr)
1	-0.17	-4.84 x 10-5	1.16 x 10-3	-4.38
2	-0.14	9.67 x 10-5	8.13 x 10-4	-0.82
3	-0.19	2.16 x 10-5	7.21 x 10-4	-4.60
4	-0.16	9.48 x 10-5	5.55 x 10-4	-0.76
5	-0.20	4.10 x 10-5	7.96 x 10-4	-4.91
6	-0.21	1.78 x 10-4	3.61 x 10-4	-4.22
7	-0.23	-9.09 x 10-5	2.32 x 10-4	-5.72
8	-0.18	1.79 x 10-4	3.08 x 10-4	-2.16
9	-0.14	1.57 x 10-4	3.69 x 10-4	-0.13
10	-0.09	2.26 x 10-4	3.71 x 10-4	2.68
11	-0.03	3.13 x 10-4	6.13 x 10-4	4.90
12	-0.09	2.38 x 10-4	7.67 x 10-4	2.25
13	-0.03	2.20 x 10-4	5.82 x 10-4	3.88
14	-0.05	9.81 x 10-5	5.62 x 10-4	2.25
15	0.20	2.87 x 10-4	1.47 x 10-4	10.90
16	-0.21	1.39 x 10-5	1.07 x 10-3	-5.49

Energy Analysis – 15 Year Impact

Medum Office 15 Year Impacts per Square Foot

Climate Zone	15-Year TDV Electricity Cost Savings (2020 PV\$)	15-Year TDV Natural Gas Cost Savings (2020 PV\$)	Total 15-Year TDV Energy Cost Savings (2020 PV\$)
1	-\$0.41	\$0.02	-\$0.39
2	-\$0.09	\$0.01	-\$0.07
3	-\$0.42	\$0.01	-\$0.41
4	-\$0.08	\$0.01	-\$0.07
5	-\$0.45	\$0.01	-\$0.44
6	-\$0.38	\$0.01	-\$0.38
7	-\$0.51	\$0.00	-\$0.51
8	-\$0.20	\$0.01	-\$0.19
9	-\$0.02	\$0.01	-\$0.01
10	\$0.23	\$0.01	\$0.24
11	\$0.42	\$0.01	\$0.44
12	\$0.19	\$0.01	\$0.20
13	\$0.33	\$0.01	\$0.35
14	\$0.19	\$0.01	\$0.20
15	\$0.97	\$0.00	\$0.97
16	-\$0.51	\$0.02	-\$0.49

Energy Analysis – First Year Impact

Medium Office/Lab First Year Impacts per Square Foot

Climate Zone	Electricity Savings (kWh/ft2- yr)	Peak Electricity Demand Reductions (kW/ft2)	Natural Gas Savings (therms/ft2-yr)	TDV Energy Savings (TDV kBtu/ft2-yr)
1	-1.91	5.01 x 10-5	0.04	-46.13
2	-0.88	3.81 x 10-4	0.02	16.77
3	-1.99	7.89 x 10-4	0.02	-44.39
4	-1.36	6.14 x 10-4	0.02	11.21
5	-1.91	3.46 x 10-4	0.02	-46.49
6	-1.92	1.11 x 10-4	0.01	-30.35
7	-2.27	-8.26 x 10-5	0.01	-53.60
8	-1.16	1.30 x 10-3	0.01	6.46
9	-0.34	1.20 x 10-3	0.01	38.20
10	0.23	2.72 x 10-3	0.01	66.84
11	1.25	3.34 x 10-3	0.01	121.24
12	0.02	2.20 x 10-3	0.01	69.95
13	0.95	1.52 x 10-3	0.01	89.43
14	1.20	1.32 x 10-3	0.01	82.84
15	4.32	4.63 x 10-4	0.00	189.69
16	-1.71	-1.21 x 10-4	0.03	-38.45

Energy Analysis – 15 Year Impact

Medum Office 15 Year Impacts per Square Foot

Climate Zone	15-Year TDV Electricity Cost Savings (2020 PV\$)	15-Year TDV Natural Gas Cost Savings (2020 PV\$)	Total 15-Year TDV Energy Cost Savings (2020 PV\$)
1	-\$4.71	\$0.61	-\$4.11
2	\$1.19	\$0.30	\$1.49
3	-\$4.31	\$0.36	-\$3.95
4	\$0.72	\$0.28	\$1.00
5	-\$4.49	\$0.35	-\$4.14
6	-\$2.87	\$0.17	-\$2.70
7	-\$4.88	\$0.11	-\$4.77
8	\$0.43	\$0.15	\$0.57
9	\$3.26	\$0.14	\$3.40
10	\$5.80	\$0.15	\$5.95
11	\$10.60	\$0.19	\$10.79
12	\$5.98	\$0.25	\$6.23
13	\$7.73	\$0.23	\$7.96
14	\$7.20	\$0.18	\$7.37
15	\$16.84	\$0.04	\$16.88
16	-\$3.91	\$0.48	-\$3.42

Incremental Cost

- From manufacturer data
- RS Means
- Including bypass dampers/controls/labor

Size (cfm)	Base Cost	\$/cfm
1000	\$6,775	\$6.78
2000	\$7,925	\$3.96
4000	\$9,175	\$2.29
6000	\$10,700	\$1.78
8000	\$11,800	\$1.48
10000	\$14,200	\$1.42
20000	\$25,700	\$1.29
25000	\$31,400	\$1.26
30000	\$34,800	\$1.16
40000	\$48,000	\$1.20
50000	\$56,000	\$1.12

Reduced Cost

- Incorporating a heat recovery ventilator results in reduced capacity
- Calculated for each climate zone
- Incremental cost was adjusted due to smaller heating/cooling equipment

Climate Zone	Cooling Design Condition (0.4%) [°F]	Heating Design Condition (99.6%) [°F]	Small Office	Medium Office	Medium Office/Lab	
1	70.4	30.4	\$0.15	\$0.00	\$1.14	
2	95.3	29.6	\$0.23	\$0.08	\$1.75	
3	82.3	36.7	\$0.16	\$0.03	\$0.21	
4	88.4	36.2	\$0.18	\$0.05	\$0.39	
5	83.8	32.6	\$0.18	\$0.03	\$0.25	
6	83.7	44.5	\$0.13	\$0.03	\$0.25	
7	83.1	44.8	\$0.13	\$0.03	\$0.23	
8	93.4	39.2	\$0.19	\$0.07	\$0.53	
9	97.7	38.6	\$0.21	\$0.09	\$0.65	
10	100.0	36.1	\$0.23	\$0.10	\$0.72	
11	105.4	29.9	\$0.27	\$0.12	\$2.03	
12	100.5	30.4	\$0.25	\$0.10	\$1.88	
13	103.5	31.4	\$0.26	\$0.11	\$1.93	
14	101.9	25.1	\$0.28	\$0.10	\$2.07	
15	111.2	41.4	\$0.25	\$0.14	\$1.04	17
16	83.7	20.8	\$0.22	\$0.03	\$1.67	

Lifecycle Cost-Effectiveness

Small Office

Climate Zone	Benefits TDV Energy Cost Savings + Other PV Savings1 (2020 PV\$)	Costs Total Incremental PV Costs2 (2020 PV\$)	Benefit-to- Cost Ratio		
1	-\$1.98	\$1.25	-1.58		
2	-\$2.23	\$1.21	-1.84		
3	-\$2.70	\$1.23	-2.20		
4	-\$2.51	\$1.27	-1.97		
5	-\$2.78	\$1.22	-2.29		
6	-\$2.89	\$1.32	-2.19		
7 -\$3.13		\$1.30	-2.40		
8 -\$2.82		\$1.31	-2.15		
9 -\$2.66		\$1.30	-2.04		
10	-\$2.65	\$1.38	-1.92		
11	-\$1.73	\$1.30	-1.32		
12	-\$1.91	\$1.24	-1.54		
13	-\$1.87	\$1.28	-1.46		
14	-\$2.07	\$1.36	-1.52		
15	-\$1.96	\$1.39	-1.40		
16	-\$1.58	\$1.50	-1.05		

Lifecycle Cost-Effectiveness

Medium Office

Climate Zone	Benefits TDV Energy Cost Savings + Other PV Savings1 (2020 PV\$)	Costs Total Incremental PV Costs2 (2020 PV\$)	Benefit-to- Cost Ratio
1	-\$0.39	\$0.86	-0.45
2	-\$0.07	\$0.82	-0.09
3	-\$0.41	\$0.85	-0.48
4	-\$0.07	\$0.89	-0.08
5	-\$0.44	\$0.84	-0.52
6 -\$0.38		\$0.90	-0.42
7	-\$0.51	\$0.89	-0.57
8	8 -\$0.19		-0.22
9	9 -\$0.01		-0.01
10	\$0.24	\$1.00	0.24
11	\$0.44	\$0.88	0.50
12	\$0.20	\$0.85	0.24
13	\$0.35	\$0.88	0.39
14	\$0.20	\$0.95	0.21
15	\$0.97	\$0.92	1.05
16	-\$0.49	\$1.15	-0.43

Lifecycle Cost-Effectiveness

Medium Office/Lab

Climate Zone	Benefits TDV Energy Cost Savings + Other PV Savings1 (2020 PV\$)	Costs Total Incremental PV Costs2 (2020 PV\$)	Benefit-to- Cost Ratio		
1	-\$4.11	\$0.96	-4.28		
2	\$1.49	\$0.67	2.24		
3	-\$3.95	\$1.91	-2.07		
4	\$1.00	\$1.74	0.57		
5	-\$4.14	\$1.87	-2.21		
6	-\$2.70	\$1.91	-1.42		
7	-\$4.77	\$1.89	-2.53		
8	\$0.57	\$1.66	0.35		
9 \$3.40		\$1.99	1.71		
10	\$5.95	\$1.94	3.07		
11	\$10.79	\$0.86	12.52		
12	\$6.23	\$0.66	9.48		
13	\$7.96	\$0.52	15.22		
14	\$7.37	\$1.04	7.06		
15	\$16.88	\$2.03	8.33		
16	-\$3.42	\$0.51	-6.76		

Proposed Code Language

SECTION 140.4 – PRESCRIPTIVE REQUIREMENTS FOR SPACE CONDITIONING SYSTEMS

(o) - Exhaust Air Heat Recovery.

- 1. Each fan system shall have a heat recovery system when the system supply airflow rate exceeds the value listed in Tables <u>140.4-E-1 or 140.4-E-2</u>.
- 2. <u>Heat recovery systems required by this section shall result in a net sensible energy recovery ratio of at least 60% for both heating and cooling as tested using AHRI 1060-2014 or 1061- 2014 and certified by AHRI. A 60% sensible energy recovery ratio shall mean a change in the dry bulb of the outdoor air supply equal to 60% of the difference between the outdoor air and exhaust air dry bulb at design conditions. Provision shall be made to bypass or control the energy recovery system to permit air economizer operation as required by Section 140.4(e): Economizers.</u>

EXCEPTION 1 to Section 140.4(o): Systems serving spaces that are not cooled and that are heated to less than 60°F.

EXCEPTION 2 to Section 140.4(o): Where more than 60% of the outdoor air heating energy is provided from site-recovered energy.

EXCEPTION 3 to Section 140.4(o): Where the sum of the airflow rates exhausted and relieved within 20 ft. of each other is less than 75% of the design outdoor airflow rate, excluding exhaust air that is either:

- 1. used for another energy recovery system,
- 2. not allowed by ASHRAE Standard 170 for use in energy recovery systems with leakage potential, or
- 3. of Class 4 as defined in ASHRAE Standard 62.1.

EXCEPTION 4 to Section 140.4(o): Systems expected to operate less than 20 hours per week

Proposed Code Language

TABLE 140.4-E-1 EXHAUST AIR ENERGY RECOVERY REQUIREMENTS FOR VENTILATION SYSTEMS

	% Outdoor Air at Full Design Airflow Rate							
	$\frac{\geq 10\%}{and}$	<u>≥20%</u> and <30%	$\frac{\geq 30\%}{and}$	<u>≥40%</u> and <50%	<u>≥50%</u> and <60%	<u>≥60%</u> and <70%	≥70% and <80%	<u>≥80%</u>
Climate Zone	Design Supply Fan Airflow Rate, cfm							
<u>1, 2, 3, 4, 5, 6, 7, 8, 9,</u> 10, 11, 12, 13, 14, 16	NR	NR	NR	NR	NR	NR	NR	NR

TABLE 140.4-E-2 EXHAUST AIR ENERGY RECOVERY REQUIREMENTS FOR VENTILATION SYSTEMS OPERATING GREATER THAN OR FOUAL TO 8000 HOURS PER YEAR

	% Outdoor Air at Full Design Airflow Rate							
	$\frac{\geq 10\%}{\text{and}}$	$\frac{\geq 20\%}{\text{and}}$	<u>≥30%</u> and <40%	<u>≥40%</u> and <50%	<u>≥50%</u> and <60%	<u>≥60%</u> and <70%	≥ <u>70%</u> and <80%	<u>≥80%</u>
Climate Zone	Design Supply Fan Airflow Rate, cfm							
<u>2, 1,7,</u> 3, 4, 5, 6	<u>NR</u>	<u>NR</u>	<u>NR</u>	<u>NR</u>	<u>NR</u>	<u>NR</u>	<u>NR</u>	<u>NR</u>
1, 7, 2,8, 9, 10, 11, 12, 13, 14, 15	<u>NR</u>	<u>≥19,500</u>	<u>≥9000</u>	<u>≥5000</u>	<u>≥4000</u>	<u>>3000</u>	<u>≥1500</u>	<u>≥120</u>
<u>16</u>	<u>≥2500</u>	<u>≥2000</u>	<u>≥1000</u>	<u>≥500</u>	<u>≥140</u>	<u>≥120</u>	<u>≥100</u>	<u>≥80</u>

Questions?

Mark Alatorre <u>mark.alatorre@energy.ca.gov</u> (916) 654-4642

Comments Due by July 7th Docket Number 2017-BSTD-01 docket@energy.ca.gov